

Document id Title Organisation /Author Date Status
P9-002 mvdXML specification 1.1 Tim Chipman, Thomas Liebich, Matthias Weise 2016-02-15 Final

Copyright © buildingSMART International Ltd. 2011-16

Model Support Group

Specification of a standardized format to define and exchange

Model View Definitions with Exchange Requirements and Validation Rules

Developed by
Model Support Group (MSG) of buildingSMART International Ltd.

Authors

Chipman, Tim; Liebich, Thomas; Weise, Matthias

Version 1.1 Final
15. 02. 2016

Page no. Authors
2 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Document history
Version Change description Date
1.1 Final schema extensions

 namespace updated to: http://buildingsmart-tech.org/mvd/XML/1.1
 RuleId - new simple type to restrict EntityRule.Reference.@IdPrefix, EntityRule.@RuleId

and AttributeRule.@RuleId
 EntityRule.Reference.@IdPrefix - changed to RuleId (was normalizedString)
 EntityRule.@RuleId - changed to RuleID (was normalizedString)
 AttributeRule.@RuleId - changed to RuleID (was normalizedString)
 Copyright – changed to normalizedString (was anyURI)
documentation
 examples updated to the latest grammar
 documentation updated and improved

2016-02-15

1.1 RC schema extensions
 EntityRule.References.Template - new element that allows to reference other templates

as partial templates, it allows to reuse common, smaller ConceptTemplate definitions
 EntityRule.References.Template.@ref - reference to the partial template by uuid
 EntityRule.References.@IdPrefix - an optional prefix for the RuleId name, used to

prevent ambiguous RuleId, if the same partial template is referenced twice in a concept
template tree

 Concept.TemplateRules - new element and tree structure to define a logical tree (with
Boolean operators) to combine several template rules

 ConceptRoot.Applicability - new element to check, whether the instance of the
applicableRootEntity is applicable, allows for more conditions (like certain property
values)

 ConceptTemplate.@applicableSchema - defined as a list of extensible enumeration of
standard IFC schema identifiers, or any other schema name.

 ModelView.@applicableSchema – defined as a single string, being an extensible
enumeration of standard IFC schema identifiers, or any other schema name

 TemplateRules – new element that is declared in a recursive way, allowing other
TemplateRules, or individual TemplateRule as child elements. It allows to establish a
Boolean tree, where at each TemplateRules a logical operator is defined,

 TemplateRules.@operator – new attribute that defines the logical operator to combine
the logic results of its children,

 Requirement.@requirement – enhancement of the enumerators to include
recommended, not-relevant (was “not relevant” and “optional”) and not-recommended.

schema changes - strict version: removed, transitional version: deprecated
 AbstractRule - abstract element and complexType removed, attributes moved to

AttributeRule and EntityRule
 ConceptTemplate.Rules - restricted to AttributeRule, was an agreement in V1.0, now

enforced by schema
 AttributeRule.@Cardinality - removed: this attribute shall not be used to impose a

restriction on the cardinality, restrictions are all handled by template rules
 EntityRule.@Cardinality - removed: this attribute shall not be used to impose a

restriction on the cardinality, restrictions are all handled by template rules
 EntityRule.EntityRules - removed: There is no usage for an EntityRule to directly contain

other EntityRules, without an intermediate AttributeRules
 ConceptRoot.Requirements - removed: requirements are only valid for concepts, not for

a root concept

2015-08-18

Page no. Authors
3 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Version Change description Date
 Concept.Definition – unified the whole schema to have Definition being always the first

element in a sequence
 Concept.Rules - removed: AttributeRules and EntityRules at this level are not legal,

replaces by TemplateRules that only allow TemplateRule, and Boolean logic, the old
Rules structure did not allow for logical combinations of individual rules, other than by
the implied AND combination

 Concept.SubConcepts - removed/deprecated: the inclusion of SubConcepts has no
functionality so far, in order to reduce complexity it should not be used, concepts should
be flat

 Cardinality - simple type removed/deprecated, not used any more in AttributeRule or
EntityRule

 ModelView.Definition – unified the whole schema to have Definition being always the
first element in a sequence

1.1 beta First revision of mvdXML with following corrections, changes and clarifications:
Schema extensions:
 cardinality attribute of AttributeRule and EntityRule extended to support definition of any

min and max settings
 BaseConcept and Override attribute added to Concept
 tags attribute added to Definitions
Rule grammar:
 mvdXML 1.1 beta provides a grammar for defining constraints to simplify rule parsing

and to enable logical “or” combination of rules
Schema improvements:
 new complex type GenericReference (used by ModelView and Concept)
 simplified definition of EntityRule and TemplateRule
 definition of applicability attribute changed for ExchangeRequirement and Requirement
 minOccurs changed from 1 to 0 for ModelView.Roots and mvdXML.Templates
 maxOccurs added to several definitions, mainly for clarification
 definition and use of applicability (was xs:attribute is now xs:simpleType)
 ConceptTemplate.applicableSchema changed to a list of String types
 ConceptRoot.applicableRootEntity now mandatory
Improved and extended documentation:
 Use of sub-templates and sub-concepts clarified
 Several improvements and corrections

2013-11-01

1.0 Final release of mvdXML. Accepted by bSI ITM committee as the official buildingSMART
specification for publishing Model View Definitions
 NOTE This release does not yet focus on model validation

2012-05-14

0.9.4 The following changes were made in this draft:
 EntityRule.EntityRules added for indicating subtype rules.

2012-05-11

0.9.3 The following changes were made in this draft:
 ModelView.BaseView added for indicating add-on views.
 ExchangeRequirement.applicability attribute added.
 ConceptTemplate.ApplicabileEntities renamed to ApplicableEntity.

2012-05-07

0.9.2 The following changes were made in this draft:
 ConceptLeafNode was renamed to Concept, with SubConcepts added.
 ApplicableSchema attributes use string instead of enumeration for version flexibility.
 Cardinality includes “_asSchema” to indicate default cardinality.

2012-04-20

Page no. Authors
4 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Version Change description Date
0.9.1 Combined mvdXML schema proposal incorporating the original mvdXML 0.5 with the

proposed phase 2 extension, several simplifications:
 The ConceptNode entity was deleted.
 The Concept abstract entity was deleted, since ConceptNode was deleted, where the

only attribute was moved to the subtype ConceptLeafNode.
 The ConceptRootNode Category attribute was deleted

2012-03-27

0.8 Proposal for phase 2 of a formal mvdXML format: Mapping of MVD concepts to IFC
definitions as appendix to mvdXML 0.5

2011-05-20

0.5 First buildingSMART release, no other changes of content 2011-06-19
0.4 Public release, first release after acceptance of mvdXML by buildingSMART ITM group,

following changes have been made:
Incorporation of the formally defined (IFC) schema, that describes the formal subschema
corresponding to the Model View Definition.
Minor changes as result of first prototype developments.

2011-05-05

0.3 Public release, incorporating feedback from buildingSMART MSG
Restructuring of document content, adding MVD history.
Adding general objectives, motivation and relation to MVD methodology.
Minor corrections in XSD Version 0.3 (key/keyref and href for Definition).

2011-03-04

0.2 Restricted release to buildingSMART MSG and TechCom, XSD Version 0.2 2011-02-16
0.1 Internal release, XSD version 0.1 2011-02-07

Page no. Authors
5 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Table of Content
1 Overview ... 7

1.1 Purpose .. 7
1.2 Methodology ... 7
1.3 Usage ... 8

2 Schema .. 9
2.1 Quick overview .. 10
2.2 Simple example .. 14

3 Description of mvdXML schema elements and types ... 18
3.1 mvdXML ... 18
3.2 Concept Template .. 18

3.2.1 Attribute Rule ... 19
3.2.2 Entity Rule ... 20
3.2.3 Constraint ... 20

3.3 Model View .. 21
3.3.1 Exchange Requirement ... 21
3.3.2 Concept Root .. 22
3.3.3 Applicability .. 22
3.3.4 Concept ... 23
3.3.5 Requirement ... 24
3.3.6 TemplateRules .. 25
3.3.7 TemplateRule .. 26

3.4 Common type and attribute definitions .. 26
3.4.1 Identity .. 26
3.4.2 Definition .. 27
3.4.3 Body .. 27
3.4.4 Link .. 28

4 Rule Grammar ... 29
5 mvdXML Use Cases .. 32

5.1 MVD Documentation ... 32
5.2 Specification of subset schemas .. 32
5.3 Data Filtering ... 33
5.4 Data Validation .. 33

6 Glossary .. 34
6.1 ER ... 34
6.2 ERM .. 34
6.3 MVD ... 34

7 Examples ... 35
7.1 Example for MVD documentation ... 35
7.2 Example for MVD validation .. 41

8 XSD Listing ... 49

Page no. Authors
6 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Table of Figures
Figure 1: Graphical representation of mvdXML schema .. 9
Figure 2: Basic structure of the mvdXML schema .. 10
Figure 3: main mvdXML elements for ConceptTemplate ... 10
Figure 4: main mvdXML elements for ModelView ... 13
Figure 5: HTML documentation of IFC4 ... 32
Figure 6: Graphical representation of the concept template “Nesting” .. 35
Figure 7: graphical representation of the concept template “port nesting” ... 36
Figure 8: rendering of HTML tables to document the exchange requirements for the different ports 36
Figure 9: graphical representation of the usage of concept “port-nesting” at the root concept
IfcHeatExchanger.. 37

Table of Tables
Table 1: Common element references defined in the element mvdXML. ... 18
Table 2: Common attributes and element references defined in the element ConceptTemplate. 19
Table 3: Common attributes and element references defined in the element AttributeRule. 20
Table 4: Common attributes and element references defined in the element EntityRule. 20
Table 5: Common attributes defined in the element Constraint. .. 20
Table 6: Common attributes and element references defined in the element ModelView. 21
Table 7: Common attributes defined in the element ExchangeRequirement. .. 22
Table 8: Common attributes and element references defined in the element ConceptRoot. 22
Table 9: Common element references defined in the element Concept. .. 23
Table 10: Common element references defined in the element Requirement. .. 24
Table 11: Common attributes defined in the element TemplateRules. ... 25
Table 12: Truth table for operator attribute .. 25
Table 13: Common attributes defined in the element TemplateRule. .. 26
Table 14: Common attributes defined in the attributeGroup identity. ... 27
Table 15: Common element references defined in the element Definition. ... 27
Table 16: Common attributes defined in the element Body. ... 28
Table 17: Common attributes defined in the element Link. .. 28
Table 18: Description of metric values. .. 30
Table 19: Description of operators. .. 30
Table 20: Description of operators that can be applied to different data types. 31

Page no. Authors
7 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

1 Overview
A Model View Definition (MVD) describes the subset of a data schema that is required to exchange the
data required in specific data exchange scenarios. An Exchange Requirement (ER) defined the required
population (the data that is actually provided in an exchange file) of such a sub schema.
The buildingSMART standard mvdXML refers to an electronic format for representing such Model View
Definitions and associated Exchange requirements. The purpose of this document is to describe the
structure and usage of mvdXML.
While a data schema describes available data structures and type information, a model view definition
describes graphs of such data structures to be used in particular scenarios with particular constraints. While
mvdXML is a generic structure that could be applied to any data schema, the primary intention and
documentation herein describes its use relative to the Industry Foundation Classes (IFC) data schema, the
ISO16739 standard.

1.1 Purpose
The mvdXML format serves several purposes:
 To define the sub schema for the MVD, based on the base schema of IFC
 To support automated validation of IFC data sets for quality assurance and software certification.
 To generate documentation for specific model views and the IFC specification itself.
 To support software vendors providing filtering of IFC data based on model views.
 To limit the scope of IFC to well-defined subsets applicable for particular applications.

NOTE: If mvdXML shall be used for one specific purpose only not all features of this specification might be of
interest. For instance, data filtering and data validation not necessarily require detailed end-user documentation
or any meta-data like status, owner etc. Accordingly, depending on the main use case a subset of mvdXML might
be sufficient to cover required functionality. More details about suggested use cases and evaluation of mvdXML
are discussed in chapter 5.

1.2 Methodology
The underlying methodology of mvdXML is the definition of concept templates and concepts.
 A Concept Template is a graph that starts with a root entity and consists of attribute and other entity

definition, all are required to represent a functional unit required to exchange specific data
 An example is the concept template “property sets for objects”, that describes the graph, starting

at the applicable supertype IfcObject, and describing the graph down to the assigned
IfcPropertySet and further to the individual properties, such as IfcPropertySingleValue.

 The official IFC specification lists within its chapter 4 “fundamental concepts and assumptions”
those concept templates already defined. Developers of Model View Definitions are encouraged
to use these concept templates, but may enhance the existing or define new ones.

 A Concept is the reference to such a concept template for each entity (as subtypes of the applicable
root entity of the concept template) and describes the particular constraints and usages within the
scope of the entity.
 An example is the definition of all applicable property sets, such as Pset_BeamCommon for the

entity IfcBeam as a particular usage of the concept template “property sets for objects”.

Page no. Authors
8 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

A model view indirectly describes the set of IFC entities within scope based on entities referenced from
each root concept, and entities or types (and subtypes as defined) used within instance graphs. All such
IFC entities maybe combined and published as the IFC schema subset corresponding to the model view.
The IFC schema subset has to be a valid schema by itself.

1.3 Usage
While it is still being possible to write an mvdXML based Model View Definition by using any text editor, it
is anticipated that specific software applications are used to read and write mvdXML data sets. Software
for working with mvdXML may include the following.
 The IFC Documentation Generator (IFCDOC.EXE) is a free tool issued by buildingSMART that reads

and writes mvdXML, and provides a graphical user interface for defining all content within mvdXML. It
can be preloaded with a particular IFC release specification and allows access to all parts of the IFC
specification when developing the mvdXML concepts and constraints. This tool may also auto-
generate instantiation diagrams, output HTML documentation for model views, and is also used for
generating the IFC4 documentation.

 XML/XSD editors such as Microsoft Visual Studio and Eclipse may edit mvdXML in raw format, just as
any other XSD-based schema.

 Testing servers may read mvdXML and use such information to validate submitted IFC files for
conformance.

 IFC-based software applications may read mvdXML for automatically filtering and validating data to
conform to the specified constraints. It is also possible for IFC-based software applications to write
mvdXML to enable users to define custom exchange scenarios.

 Requirement management tools may support configuration of data exchange requirements that, if
based on existing mvdXML snippets, could be exported as an mvdXML document to be used for
filtering and validating IFC data.

Page no. Authors
9 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

2 Schema

Figure 1: Graphical representation of mvdXML schema

Page no. Authors
10 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

The overall mvdXML Schema is introduced with a quick overview and by a simple example first. The next
chapter 3 is the reference for all XSD elements and types.

2.1 Quick overview
An mvdXML document contains an instance of mvd:mvdXML as the only single valid root element. The
mvdXML element defines two main sub elements:
 mvd:Templates: a list of reusable concept templates, mvd:ConceptTemplate, that define the graph

within the base IFC schema representing the entities and attributes needed to support the functional
unit addressed by the concept

 mdv:Views: a list of model view definitions, mvd:ModelView that contains the necessary entities and
associated concepts to define the sub schema of the base schema to support the exchange
requirements.

Figure 2: Basic structure of the mvdXML schema
An mvd:ConceptTemplate defines the graph, starting from an applicable root entity, following attribute and
entity links, down to the individual attributes, which contains all schema information for a particular unit of
functionality – or “concept template”, the term used within the Model View Definition methodology.

Figure 3: main mvdXML elements for ConceptTemplate

Page no. Authors
11 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

EXAMPLE: The attachment of property sets with particular properties to an element is the unit of functionality a
concept template “Property Sets for Objects”1. The definition of an assembly structure, where the assembly, such
as an elemented wall has building element parts is another example “Element Decomposition”2.

Each mvd:ConceptTemplate starts with the applicable entity, the root of this unit of functionality. In most
cases, it is a subtype of IfcObject, being an occurrence of a model element subject to validation.
Then the attribute(s) used for expressing the unit of functionality are declared, then the type of the attribute,
in case of an entity type, it can have own attribute definitions again. All together it defines a tree structure
that describes the portion of the IFC schema needed for this unit of functionality. The ConceptTemplate
element contains:
 @applicableSchema, such as IFC2X3 or IFC4,
 @applicableEntity, the root entity of the concept template, often IfcObject, or a subtype, like IfcProduct,

or IfcGroup, IfcProject and other high level entities, deriving from IfcRoot
 NOTE: In case of partial concept templates, which are reused at many concept templates, may have root

entities that do not derive from IfcRoot. An example is the partial concept template of swept solid geometry
with a root element IfcSweptAreaSolid, which is reused in several other concept templates describing
element shape representation

 Description, a general element to include potentially multilingual documentation and links to figures,
diagrams, examples and other external documents. It is mainly used for the mvdXML purpose of
generating MVD documentation

 Rules, a list of attribute definitions, being direct attribute or relationships of the root entity, or attributes
defined at the level of its subtypes, that are part of the concept template tree
 NOTE: In many cases, the inverse attribute is used here to navigate to relationship entities
 EXAMPLE: a common example of an attribute rule that relate to an attribute that is only defined at a subtype

level is PredefinedType.
 SubTemplates, a concept template that extents the definition of the main concept, it is used to group

related concept templates, e.g. all concept templates that relate to element geometry may have a
common parent concept template “Product Geometric Representation”, and then extent to box
geometry, foot print geometry and body geometry.
 NOTE: If a template with subtemplates is used in an exchange requirement, then the applicableEntity

decides which template is used for model checking.
 EXAMPLE: A template is defined for IfcSimpleProperty with subtemplates for IfcPropertySingleValue and

IfcPropertyEnumeratedValue. It is referenced by a Concept for checking properties. If an instance of
IfcPropertySingleValue is to be checked, then the template with best matching applicableEntity is selected
from the subtemplates.

The tree structure of the Rules section at ConceptTemplate consists of AttributeRules, referring to
EntityRule, referring to AttributeRules, and so on. Each AttributeRule has:
 an @AttributeName, the name of the attribute, relationship or inverse relationship in the IFC schema
 an @RuleID, if present, it defines an ID which is used in the model view definition to document specific

usage for particular entities, or to validate its values according to exchange requirements,
 a Constraints, a list of Constraint on the schema population, if used for this concept template

1 See: http://www.buildingsmart-tech.org/ifc/IFC4/Add1/html/link/property-sets-for-objects.htm
2 See: http://www.buildingsmart-tech.org/ifc/IFC4/Add1/html/link/element-decomposition.htm

Page no. Authors
12 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 EXAMPLE: a concept template for swept solid geometry would enforce, that the value of
RepresentationType of entity IfcShapeRepresentation is always “SweptSolid”, independently of its particular
usage in a model view definition later. This can be encoded as a Constraint. Similarly the cardinality of sets
or lists might be constrained.

 NOTE: the Constraints are a way to flexibly enhance the WHERE rules within the EXPRESS definition of
IFC, and to add such rules, when using ifcXML (that cannot include such WHERE rules).

 an EntityRules element, containing a list of EntityRule, relating to the underlying type of the attribute
An EntityRule refers to an entity, an enumeration, a derived or simple type (based on the EXPRESS
definition of IFC). Each EntityRule has:
 an @EntityName, the name of the underlying type

 NOTE: it shall not be a SELECT type, those have to be expanded to the selected types
 an @RuleID, see above
 a Constraints, see above
 an AttributeRules element, containing a list of AttributeRule, relating to the attributes, relationships or

inverse relationships, if the EntityRule represents an entity itself
 a References element, if present, it links to a partial concept template that shall be used to expand the

concept template further.
 EXAMPLE: the definition of a property set is used in different concept templates, for property sets on

occurrences and for property sets on types. Hence it can be defined once as a partial concept template that
is referenced from the main concept template through References.

 NOTE: The underlying type of the EntityRule, defined by the EntityName attribute, and the applicableEntity
of the referenced template should be the same.

The mvd:ModelView element describes how the concept templates are used in a view and contains:
 @applicableSchema, such as IFC2X3 or IFC4,
 mvd:BaseView definition if it is an add-on view that only defines restrictions or extensions on top of

another model view definition,
 mvd:ExchangeRequirements, a list of mvd:ExchangeRequirement, that stipulate if the template rules

imposed on concepts, declared for each ConceptRoot, have to be fulfilled for the individual exchange
requirements,

 mvd:Roots, a list of mvd:ConceptRoot, that defined the concepts applicable to each entity instance in
an IFC data set together with the template rules

Page no. Authors
13 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Figure 4: main mvdXML elements for ModelView
An mvd:ConceptRoot references a specific IFC entity, e.g. IfcWall, representing a major and individually
testable model element3 in a MVD. Each concept root contains
 mvd:Concepts: a set of concepts, mvd:Concept, which describe template rules for common subsets

of information (e.g. material usage) within the context of the particular concept root.
 mvd:Template: Each concept is backed by a template, mvd:ConceptTemplate, describing a graph

of object instances, relationships, and constraints, where the concept may provide a set of
template rules containing the parameters that apply to the referenced rule ID at the concept
template. The mvd:Template provides a link, based on the uuid, to that mvd:ConceptTemplate

 mvd:Requirements: a list of mvd:Requirement, each linking to the mvd:ExchangeRequirement by
uuid, to declare that this Concept is stipulated for this exchange.

 mvd:TemplateRules: a tree of mvd:TemplateRule that creates a Boolean logic between individual
template rules (applying and, or, and other Boolean operators). The outermost TemplateRules
element has to validate to true for this concept to pass validation

 mvd:Applicability: a list of TemplateRules with a link to the applicable ConceptTemplate via the
Template element. It optionally applies additional constraints on the applicable entity that needs to be
fulfilled by the entity instance before the Concepts are validated.
NOTE The elements Applicability and the tree structure of TemplateRules are the main extensions of mvdXML1.1
(since Release Candidate) in order to support the purpose “support automated validation of IFC data sets for
quality assurance”.

3 The IFC schema differentiates between root entities, all entities derived from IfcRoot, and resource entities, all other

entity definitions. A resource entity shall always be used (referenced) by a root entity. Therefore, entities defined in an mvd:ConceptRoot should be an IFC root entity.

Page no. Authors
14 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

2.2 Simple example
The following simple example shows the use of mvdXML for validation purposes. It defines a necessary
concept template describing the unit of functionality of how to associate a port to a distribution element in
IFC, and a hypothetical model view definition, that enforces that every sensor within submitted IFC data
complying with the MVD shall have at least one port that submits signals.
Header section:
<?xml version="1.0" encoding="UTF-8"?>
<mvdXML
 name="example MVD for mvdXML documentation – sensor signals"
 uuid="4afb1a8b-0b61-4ff8-9863-c10690fe06f2"
 xmlns="http://buildingsmart-tech.org/mvd/XML/1.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://buildingsmart-tech.org/mvd/XML/1.1 ../mvdXML_V1.1.xsd">
A single mvdXML element shall be the single root element within an mvdXML file. The name space of the
current mvdXML version shall be http://buildingsmart-tech.org/mvd/XML/1.1. The schema location is
provided locally.
 <Templates>
 <ConceptTemplate uuid="bafc93b7-d0e2-42d8-84cf-5da20ee1480a"
 name="Port Assignment" applicableSchema="IFC4"
 applicableEntity="IfcDistributionElement">
 <Definitions>
 <Definition>
 <Body>
<![CDATA[<p>Distribution ports are defined by <i>IfcDistributionPort</i> and attached by the <i>IfcRelNests</i> relationship. Ports can be distinguished by the <i>IfcDistributionPort</i> attributes <i>Name</i>, <i>PredefinedType</i>, and <i>FlowDirection</i>:</p>]]>
 </Body>
 </Definition>
 </Definitions>
A single ConceptTemplate is declared with the name “Port Assignment”, based on the schema definition
of IFC4. The applicable entity, and root entity of the concept template, is IfcDistributionElement. The
definition of the attribute rules start from that root entity.
 <Rules>
 <AttributeRule AttributeName="IsNestedBy">
 <EntityRules>
 <EntityRule EntityName="IfcRelNests">
 <AttributeRules>
 <AttributeRule AttributeName="RelatedObjects">
 <EntityRules>
 <EntityRule EntityName="IfcDistributionPort">
 <AttributeRules>
 <AttributeRule AttributeName="Name" RuleID="Name"/>
 <AttributeRule AttributeName="PredefinedType" RuleID="Type"/>
 <AttributeRule AttributeName="FlowDirection" RuleID="Flow"/>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>

Page no. Authors
15 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
The concept template tree follows the IFC definition for that portion that is required to describe, how a
distribution port is associated to a distribution element. It is defined by a path starting from the applicable
entity.
 IfcDistributionElement –IsNestedBy IfcRelNests –RelatedObjects IfcDistributionPort
At the related IfcDistributionPort, the three necessary attributes Name, PredefinedType and FlowDirection
are declared. Since the instantiation of those attributes shall be checkable, they each have a @RuleID. The
@RuleID attributes shall be unique within the scope of its usage in a ConceptTemplate. The validation
rules at the individual concepts use the @RuleID strings as variable names within the formal grammar.
 <Views>
 <ModelView uuid="72dad5df-6f61-49f2-ba8c-baccf24a6ce5"
 name="Sensor signal view" applicableSchema="IFC4" code="Sensor">
 <Definitions>
 <Definition>
 <Body lang="en"><![CDATA[ModelView for mvdXML 1.1 documentation.]]></Body>
 </Definition>
 </Definitions>
A single Model View Definition MVD is defined within the mvdXML file, it is applicable to the IFC4 schema
and has a name and code. In case of fully defined and published MVD’s, the name is the full name as
published, and the code is the same abbreviation, as used in the IFC HEADER Section.

EXAMPLE: name=”IFC4 Reference View Version 1.0” and code=”IFC4 RV V1.0” see official documentation4
 <ExchangeRequirements>
 <ExchangeRequirement uuid="ae70f764-938b-4cf7-9814-c29a47f56b0e"
 name="Distribution signal" code="ERM1" applicability="export">
 <Definitions>
 <Definition>
 <Body lang="en">
<![CDATA[Simple example for checking sensor elements to always submit signals.]]>
 </Body>
 </Definition>
 </Definitions>
 </ExchangeRequirement>
 </ExchangeRequirements>
For the MVD there is one exchange requirement defined. Each exchange requirement has an own selection
of validation rules, so that data requirements and data completeness can be described specifically for an
exchange.

NOTE: An example for an exchange requirement is the import requirements for a BIM usage or purpose.
 <Roots>
 <ConceptRoot uuid="8b949664-a5df-4bfc-922c-4a486c41d756" name="Sensor"
 applicableRootEntity="IfcSensor">
 <Definitions>

4 http://www.buildingsmart-tech.org/specifications/ifc-view-definition/ifc4-reference-view

Page no. Authors
16 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 <Definition>
 <Body>
<![CDATA[<p>A sensor is a device that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument.</p>]]>
 </Body>
 </Definition>
 </Definitions>
The MVD (or the MVD part that shall be validated) consists of a single root concept, i.e. a single IFC model
element (or occurrence object), here IfcSensor.
 <Concepts>
 <Concept uuid="a4fa348c-a025-4a02-abfd-c42fd0901540" name="Port Assignment">
 <Definitions>
 <Definition>
 <Body lang="en">
<![CDATA[Concept to validate that every sensor elements has a port defined that submits signals.]]>
 </Body>
 </Definition>
 </Definitions>
 <Template ref="bafc93b7-d0e2-42d8-84cf-5da20ee1480a"/>
The ConceptTemplate “Port Assignment”, which is applicable to IfcSensor, since IfcSensor is a subtype of
the @applicableEntity IfcDistributionElement, for which the ConceptTemplate is declared, is assigned as a
Concept with the same name “Port Assignment”.
The assignment is declared using an ID/IDREF pair, based on the uuid for the ConceptTemplate.

NOTE: If using mvdXML for MVD definition and documentation purposes, this statement means that any
implementation of IfcSensor has to support the functionality to assign ports to the sensor in order to comply with
the requirements of that MVD. A certification process for that MVD would impose tests to make sure that ports
are assigned to sensors for import and/or export.

 <Requirements>
 <Requirement exchangeRequirement="ae70f764-938b-4cf7-9814-c29a47f56b0e"
 requirement="mandatory" applicability="export"/>
 </Requirements>
Reference to the exchange requirement where additional constraints apply to the data provided for the
Concept “Port Assignment”. The link is declared using an ID/IDREF pair, based on the uuid for the
ExchangeRequirement. The logical results created by the TemplateRules are interpreted following the
@requirement attribute.

EXAMPLE: The requirement=”mandatory” stipulates, that the outcome of the single outermost TemplateRule shall
be true, otherwise an error is reported.

 <TemplateRules>
 <TemplateRule Parameters="Name[Value]='Output' AND Type[Value]='SIGNAL' AND
 Flow[Value]='SOURCE'" Description="Transmits signal."/>
 </TemplateRules>
A rule, referring to the template definition, hence the name “TemplateRule” is imposed, and an mvdXML
compliant validator would check that each instance of IfcSensor in the IFC file would have an assigned
IfcDistributionPort with the attributes and corresponding values Name=”Output”, Type=”SIGNAL”, and
Flow=”SOURCE”.

NOTE: The parameter syntax of mvdXML 1.0 is using a semicolon between the parameters for defining AND
combination. The use of semicolon is still supported, but it is recommended to use AND instead. The metric

Page no. Authors
17 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

[Value] checks the value of the attribute. It is the default metric, therefore Name=’Output’ is identical to
Name[Value]=’Output’.

 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Page no. Authors
18 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

3 Description of mvdXML schema elements and types
This section documents the individual mvdXML element, type and attribute definitions.

3.1 mvdXML
This element comprises the scope of the mvdXML document; it includes zero-to-many mvd:ModelView and
zero-to-many mvd:ConceptTemplate (as a minimum, all concept templates that are referenced in the
included model view(s)).
It is recommended to include all concept templates that are referenced by included model view(s), or else
distribute the mvdXML file along with other mvdXML files containing such templates.

NOTE: A particular usage of mvdXML is to publish concept templates only. In this case, the ModelView element
remains empty.

Element/Attribute Type Description
Identity attributes See section 3.4.1
Templates ConceptTemplate

[0:?]
Set of templates, which may be exchanged with or without referencing model
view definitions.

Views ModelView
[0:?]

List of model view definitions, in order of listing in generated documentation.
 If empty, the mvdXML file is only used to exchange concept templates

and cannot be used to fulfill other purposes such as data validation
Table 1: Common element references defined in the element mvdXML.

3.2 Concept Template
This element represents the reusable concepts as templates; it has zero-to-many mvd:SubTemplates and
thereby may form a tree of related reusable concept templates. Within the tree it may refer to shared partial
concepts. Each mvd:ConceptTemplate has an applicable schema and may have applicable root entities
(i.e. concept roots to which the mvd:ConceptTemplate applies).

NOTE: For buildingSMART compliant MVD documentation generation, each mvd:ConceptTemplate appears in
Chapter 4 of the resulting HTML based documentation, with descriptive text and diagram generated from rules.
EXAMPLE: Decomposition (the re-usable concept of decomposing elements into parts)

Element/Attribute Type Description
Identity attributes See section 3.4.1
Definitions See section 3.4.2Fehler! Verweisquelle konnte nicht gefunden

werden.
@applicableSchema extensible enum

based on String
Identifies the default schema for which the template applies, such as
IFC2X_FINAL, IFC2X2_FINAL, IFC2X3, or IFC4. The template may be
used for model views of other schemas, if all enclosed rules resolve to
available attributes and types.
NOTE: In future versions it might be of interest to support more than one
IFC release. This can be supported by using a semicolon as schema
name delimiter.

Page no. Authors
19 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

@applicableEntity String
[0:?]

Indicates the IfcRoot-based entities, including all derived entities, for
which the concept applies. It is recommended to use a single base class
(e.g. IfcElement). This value provides the context for any attribute rules
and is used within MVD tools to filter the list of available templates for
particular entities. For a sub-template, the applicable entity must be the
same type or a subtype of the outer template. This value may be blank to
indicate an abstract template that cannot be instantiated, containing sub-
templates for specific entities.

@isPartial Boolean (opt) A flag, indicating whether the concept template is a partial template,
which shall only be used inside another concept template, or not.

SubTemplates ConceptTemplate
[0:?]

Set of sub-templates, having a subset of applicable entities, which further
define a concept template for particular usage. For example, a template
for material usage may have sub-templates for material layer sets,
material profile sets, and material constituent sets.
NOTE: Sub-templates have to repeat rule definitions from super-
templates in case they apply. Further restrictions can be added if
necessary. If rules are not repeated, they do not apply for the sub-
templates.

Rules AttributeRule
[0:?]

Set of attributes defined at applicableEntity, where each attribute may
have value constraints and/or graphs of object instances defined. If an
attribute is not defined, then the requirements are the same as indicated
for the schema.
[v1.0] Restricted to AttributeRule by informal agreement for uniform
usage.
[v1.1] Schema changed to enforce AttributeRule.
NOTE: For each attribute there should be no more than one
AttributeRule.
NOTE: It is allowed to define rules for attributes that are defined in a
subtype of applicableEntity. This feature can be used in IFC for instance
for the PredefinedType attribute defined for each subtype of IfcElement.
NOTE: For generating a subset schema it is mandatory to add an
AttributeRule for each optional attribute that shall be included in the
subset schema. Otherwise this attribute will be removed.

Table 2: Common attributes and element references defined in the element ConceptTemplate.
3.2.1 Attribute Rule
This element represents the specification of an attribute on an entity, with related constraints, and/or entity
rules.
Element/Attribute Type Description
@AttributeName String The case-sensitive name of the attribute relative to the enclosing

EntityRule (if exists) or the enclosing applicableEntity of the
ConceptTemplate.

@RuleID String (opt) Identifies the rule for referencing at template rules defined within concepts,
where specific parameters are applied for this rule.
NOTE: The same RuleID might be used multiple times within a concept
template definition, but it must be unique within the scope of its usage.
EXAMPLE: If two AttributeRules are defined within different EntityRules, for
instance one for IfcPropertySingleValue and the other one for
IfcPropertyEnumeratedValue, then the same RuleID can be used because
they are used in different scopes.

@Description String (opt) Optional description of the rule.

Page no. Authors
20 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

EntityRules EntityRule
[0:?]

An empty list indicates that any type may be used according to the
schema. If one or more entities or types are defined, then instances must
match one of the entries. The list of entries is expanded by each
referencing TemplateRule defined at a Concept, where downstream rules
apply according to the matching entity rule.
EXAMPLE: An attribute rule “Quantities” for IfcElementQuantity could add
entity rules for IfcQuantityLength, IfcQuantityArea, IfcQuantityVolumne etc.
Each entity rule then defines an own scope depending on the referenced
quantity type.

Constraints Constraint
[0:?]

Set of expressions, which all must evaluate to TRUE for the referenced
attribute. This implies a Boolean AND combination.

Table 3: Common attributes and element references defined in the element AttributeRule.
3.2.2 Entity Rule
This element represents the specification of an entity (or value type) referenced by an attribute, either as a
scalar reference or a reference from within a collection.
Element/Attribute Type Description
@EntityName String The case-sensitive name of the entity (e.g. “IfcBeam”) which must be

assignable to the enclosing AttributeRule (i.e. entity subtype or select
member).

@RuleID String (opt) Identifies the rule for referencing at template rules defined within concepts,
where specific parameters are applied for this rule.
NOTE: The same RuleID might be used multiple times within a concept
template definition, but it must be unique within the scope of its usage.
See also description of AttributeRule.@RuleID.

@Description String (opt) Optional description of the rule.
References ConceptTemplate

[0:1]
Optional reference to a partial template. An optional attribute “IdPrefix” can
be given to ensure that RuleIDs of partial templates are unique within the
scope of its usage. This attribute is used as a prefix for all referenced
RuleIDs.

AttributeRules AttributeRule [0:?] Indicates a list of attributes included in the concept template and
potentially constrained on the referenced entity.

Constraints Constraint [0:?] Set of expressions, which all must evaluate to True for the referenced
entity. This implies a Boolean AND combination.

Table 4: Common attributes and element references defined in the element EntityRule.
3.2.3 Constraint
This element is defined within the elements mvd:EntityRule and mvd:AttributeRule and represents a
restriction on an attribute, which may require the value, type, or collection size to have equality (or other
comparison) to a literal value or referenced value.
Element/Attribute Type Description
Expression String [v1.1] A grammar is used to simplify parsing of expressions and to

introduce new features like AND, OR and XOR. With minor changes the
form “{Metric}{Operator}{Benchmark}” from mvdXML 1.0 is still valid.
The rule grammar is defined in chapter 4.
NOTE: One major difference to 1.0 is that it is not possible to use
{Benchmark} only, i.e. to omit {Metric} and {Operator}.

Table 5: Common attributes defined in the element Constraint.

Page no. Authors
21 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

3.3 Model View
This element represents the description of a Model View Definition (MVD); it is specific to an IFC schema
release and contains zero-to-many mvd:ConceptRoot elements. It also includes the reference to zero-to-
many applicable mvd:ExchangeRequirement elements. Multiple model views from potentially different
schema releases may be contained in the same file.
The set of entities and types regarded to be within scope of a model view is not explicitly defined; rather it
is indirectly determined by constructing a graph of mvd:ConceptRoot elements and following the set of rules
indicating referenced entities within scope. Thus, describing the set of rules automatically determines what
is in or out of scope, preventing the possible mismatch of missing data structures that are required, or
included data structures that are not documented for use.

EXAMPLE: The "CoordinationView_V2.0" is a Model View Definition; it is captured by an mvd:ModelView
element. It has the @name="CoordinationView_V2.0", the @applicableSchema="IFC2X3", and a reference to
the four exchange requirements currently defined for the Coordination View Version 2.0.
HISTORY: Roots changed to optional in mvdXML 1.1 to allow “incomplete” model view definitions with meta-data
only.

Element/Attribute Type Description
Identity attributes See section 3.4.1
Definitions See section 3.4.2
applicableSchema String Identifies the schema using the ISO 10303 schema identifier, such as

IFC2X_FINAL, IFC2X2_FINAL, IFC2X3, or IFC4.
NOTE: In future versions it might be of interest to support more than one
IFC release. This can be supported by using a semicolon as schema name
delimiter.

BaseView uuid || anyURI
(opt)

Reference to a base model view definition (in case that this model view
represents an add-on model view that extents a base view).

Exchange
Requirements

Exchange
Requirement
[0:?]

List of exchange requirements defined within this model view. They should
appear in logical order.

Roots ConceptRoot
[0:?]

List of root concepts defined within scope of the model view.

Table 6: Common attributes and element references defined in the element ModelView.
3.3.1 Exchange Requirement
This element is the description of an Exchange Requirement Model (ERM) that is covered by the MVD. An
ERM covers the Exchange Requirements (ER) that are identified for a particular exchange scenario that is
covered by the MVD. ERM's may add additional constraints to the use of concepts and are an important
part of later certification and validation processes.
An ERM can be referenced from an mvd:Concept to impose specific constraints for exchanges that
reference this ERM. An ERM can be specifically declared to be only applicable for import, export or both
scenarios using the attribute applicability.

EXAMPLE: The ERM "Architecture" capturing the ER for exporting an architectural building model is an exchange
requirement model within the CoordinationView_V2.0. It is captured by an mvd:ExchangeRequirement element. It
has the @name="Architecture", and the @applicability="export".

Element/Attribute Type Description
Identity attributes See section 3.4.1

Page no. Authors
22 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Definitions See section 3.4.2
applicability Enum (opt) Identifies if the ERM is specific for

 import
 export
 both
If such value is provided, then any referencing requirements must match;
for example, if such value indicates export, then referencing requirements
may use export but not import; if such value is not provided, then
referencing requirements may use any value.
NOTE: The differentiation between import and export origins from software
certification and does not have any meaning for data checking
applications.
Export means that some application must be able to create a data set that
fulfills defined requirements.
If an exchange requirement is defined for import only, it defines the data
set that must be properly processed by an application.

Table 7: Common attributes defined in the element ExchangeRequirement.
3.3.2 Concept Root
This element represents the root element (other terms are "leaf node class", "variable concept") that
represent the fundamental parts of an MVD that is represented by a collection of supported concepts.
Element/Attribute Type Description
Identity attributes See section 3.4.1
Definitions See section 3.4.2
applicable
RootEntity

String Identifies the class or data type of instance being described or validated,
i.e. the IFC entity (deriving from IfcRoot) for which the concepts apply. The
concepts apply to this IFC entity or its subtypes (respectively instances of
those classes in case of validation).
NOTE that non-rooted entities are described by referencing rules, as such
instances cannot exist on their own where usage is always dependent
upon the referencing IfcRoot-based instance.

Applicability Applicability A set of TemplateRules, based on a concept template, which describe the
conditions, under which the concepts apply to the applicableRootEntity.
Those conditions need to validate to true as a prerequisite for checking the
TemplateRules imposed at the concepts.
NOTE the Applicability has been added to mvdXML1.1 in order to better
support data validation. It is used to control the applicability of concepts to
particular configurations of root entities, e.g. to only apply for load bearing
walls, instead of any wall (declared by the applicable IFC entity IfcWall.

Concepts Concept [0:?] List of concepts for the applicable root entity. The order of elements
indicates the sequence displayed in generated documentation.

Table 8: Common attributes and element references defined in the element ConceptRoot.
3.3.3 Applicability
This element defines those rules, being TemplateRules with a reference to a ConceptTemplate, that need
to be validated before the concepts associated to the ConceptRoot are checked.

Page no. Authors
23 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Element/Attribute Type Description
Definitions See section 3.4.2
Template TemplateRef Mandatory reference to the ConceptTemplate by uuid, where such

template may be defined within the same file (by @ref) or an external file
(by @href).
NOTE Current usage of mvdXML imposes the inclusion off all concept
templates within the same data file. The external reference by @href is
reserved for future usage.

TemplateRules TemplateRules |
TemplateRule [0:?]

Tree structure of rules indicating how template applies to particular entity.
Each TemplateRules element consists of a set of other TemplateRules or
TemplateRule element and a logical operator. Each TemplateRule element
defines the @Parameter that refer to the RuleID of the referenced
Template.
NOTE Added in mvdXML to define any logical combination of rules,
allowing for AND, OR, NOT, NAND, NOR, XOR, and NXOR logic.

3.3.4 Concept
This element represents a use definition for a particular entity with specific rules to be enforced.
Element/Attribute Type Description
Identity attributes See section 3.4.1
Definitions See section 3.4.2
@BaseConcept Concept [0:1] Enables to select a concept definition that shall either be reused or

redefined. This feature depends on the inheritance tree of the underlying
schema. If ConceptRoot.applicableRootEntity is defined for an entity called
IfcProject, then only those concepts can be selected as BaseConcept that
are defined for a super type of IfcProject, i.e. IfcContext, IfcObjectDefinition
or IfcRoot.

@Override Boolean (opt) This value must be defined if a BaseConcept is selected.
If Override = false then the Concept is reused without changes.
If true then the Concept from the super type is redefined by this Concept.

Template TemplateRef Mandatory reference to the ConceptTemplate by uuid, where such
template may be defined within the same file (by @ref) or an external file
(by @href).
NOTE Current usage of mvdXML imposes the inclusion off all concept
templates within the same data file. The external reference by @href is
reserved for future usage.

Requirements Requirement
[0:?]

Set of requirements which describe applicability of the concept to particular
exchanges for import, export or both.

TemplateRules TemplateRules |
TemplateRule [0:?]

Tree structure of rules indicating how template applies to particular entity.
Each TemplateRules element consists of a set of other TemplateRules or
TemplateRule element and a logical operator. Each TemplateRule element
defines the @Parameter that refer to the RuleID of the referenced
Template.
NOTE Added in mvdXML to define any logical combination of rules,
allowing for AND, OR, NOT, NAND, NOR, XOR, and NXOR logic.

Table 9: Common element references defined in the element Concept.
NOTE: The following options are possible for using BaseConcept and Override:
 an empty concept with BaseConcept="idref" (Override="false") to indicate that it applies with no change

Page no. Authors
24 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 an non-empty concept with BaseConcept="idref" (Override="false") to indicate that it has additional rules (by
extension)

 an empty concept with BaseConcept="idref" and Override="true" to indicate that it does not apply at all
(overridden)

 an non-empty concept with BaseConcept="idref" and Override="true" to indicate that it has replacement
rules (by restriction - no inherited rules apply, all are declared new)

EXAMPLE:
 a rule for property sets may list each applicable property set; a rule for ports may list the name, type, and

direction of each port.
 For LIST types, multiple rules combined by an AND operator indicate a sequence of instances which must

match the order of the rules. For SET types, multiple rules indicate a set of instances which ALL must be
included according to the rules.

 For SELECT, ENTITY, and all other types, multiple rules combined by an OR operator indicate any valid
state (it is valid for the attribute to reference objects that match one of the elaborated configurations).

3.3.5 Requirement
This element represents a use definition for a particular entity with specific rules to be enforced.
Element/Attribute Type Description
@exchange
Requirement

uuid Identifies the ExchangeRequirement by GUID within the same Model View
Definition.

@requirement Enum

Describes the interpretation of the result of the outermost TemplateRule
specific for one exchange requirements.
 mandatory: must be true, otherwise create an error
 recommended: should be true, otherwise create a warning
 not-relevant: no requirement;
 not-recommended: should not be true, otherwise create a warning
 excluded: must not be true, otherwise create an error

@applicability Enum (opt) Identifies if the requirement applies to
 import
 export or
 both
NOTE If such value is provided, then it must match, if given, with the
applicability setting of the exchange requirement in which it is used.

Table 10: Common element references defined in the element Requirement.
Note: The different enumerators of @requirement have the following meaning, if mvdXML is used for validating IFC
data sets. The table also shows the comparison with the mvdXML1.0 definitions.

mvdXML1.1 Meaning for validation mvdXML 1.0
mandatory error, if outer template rule validates to false mandatory
recommended warning, if outer template rule validates to false
not-relevant no reporting (no check needs to be executed) optional, not-relevant
not-recommended warning, if outer template rule validates to true
excluded error, if outer template rule validates to true excluded

Page no. Authors
25 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Note: For a standard existence check (e.g. is the property value provided, it means:
mandatory – error, if no value is provided, recommended – warning, if no value is provided, not-relevant – no check,
not-recommended – warning, if a value is provided, excluded – error, if a value is provided.

3.3.6 TemplateRules
This element establishes the possibility to define a tree of logical expressions. Individual TemplateRule are
grouped under a TemplateRules element and are logically interpreted by the @operator attribute.

NOTE: This improves the previous way to embed the logical operator in the @Parameter string at the
TemplateRule. Due to its tree structure realized by the recursive definition of TemplateRules, the logical operators
can be nested.

Element/Attribute Type Description
Description See section 3.4.2
@operator Enum The logical operator, which is used to combine the nested TemplateRules

and TemplateRule. The Boolean results of the nested rules are combined
by the logical operation according to the Truth table.
The following logical operators are defined:
 AND
 OR
 NOT
 NAND
 NOR
 XOR
 NXOR
NOTE: The valid number of the nested elements depend on the value of
the @operator. E.g. for the operator NOT, only one nested element shall
exist.

Table 11: Common attributes defined in the element TemplateRules.
The following truth tables are to be used with the @operator.

A B A AND B
0 0 0
0 1 0
1 0 1
1 1 1

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

A NOT A
0 1
1 0

A B A NAND B
0 0 1
0 1 1
1 0 1
1 1 0

A B A NOR B
0 0 1
0 1 0
1 0 0
1 1 0

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

A B A XNOR B
0 0 1
0 1 0
1 0 0
1 1 1

Table 12: Truth table for operator attribute

Page no. Authors
26 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

3.3.7 TemplateRule
This element represents an instantiation of a rule with specified parameters. It allows repetitive definitions
to be efficiently represented, such as lists of applicable ports, materials, units, property sets, etc. The
@RuleID used in the Parameters of the template rule serves as a reference to the @RuleID of an
mvd:AttributeRule or mvd:EntityRule at the referenced mvd:ConceptTemplate to be instantiated.
If the referenced mvd:EntityRule is part of a SET-based attribute, then the instance is required to uniquely
exist once (having unique combination of defined parameters), but without regard for order (as a SET has
no implied order). If the referenced mvd:EntityRule is part of a LIST-based attribute, then the instance is
required to occur at the relative position of the mvd:TemplateRule.
Element/Attribute Type Description
Description See section 3.4.2
Parameters String [v1.1] mvdXML introduces a grammar definition for the Parameters string

that is harmonized with the Expression string of mvd:Constraint. With minor
changes the form “{Parameter}={Value};” from mvdXML 1.0 is still valid.
In the new grammar the Parameters string is defined by expression where
each boolean_term requires a parameter. The parameter corresponds to
the RuleID of an AttributeRule or EntityRule at the referenced
ConceptTemplate. The operator of the grammar is now more flexible and
not only supports Equals as in mvdXML 1.0. The Value is also enhanced. It
now supports the use of a parameter, not only a value. This enables to
replace the agreement for the definition of parameter values using a ‘#’
sign. This agreement is no longer supported. Finally, each expression can
be grouped and combined through AND, OR and XOR logic.
NOTE: The differentiation between conditions and constraints as used in
mvdXML 1.0 is no longer available.

Table 13: Common attributes defined in the element TemplateRule.

3.4 Common type and attribute definitions
The mvd:Definition, and elements referenced by the element Definition, mvd:Body, and mvd:Link elements
provide the capability to add multi-lingual descriptions at any element with own identity. Such elements are:

 mvd:ModelView
 mvd:ExchangeRequirement
 mvd:ConceptTemplate
 mvd:ConceptRoot
 mvd:Concept

The information provided by this element is mainly used for documentation purposes, in particular to
generate HTML documentation as used by buildingSMART for the IFC data model.
3.4.1 Identity
Similar to IFC, the mvdXML schema makes a distinction between elements having identity and those that
do not. All elements with identity have the following attributes and sub elements defined. The information
provided in this attribute group is used for management purposes.

NOTE: The mvdXML.xsd does not incorporate an mvd:Identity abstract class, the common attributes are defined
in the attributeGroup name="identity" and the definitions in the element name="Definition".

Page no. Authors
27 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

HISTORY: The attribute ‘status’ has been changed from string to an enumeration that includes the previously
recommended values in mvdXML 1.1.

Attribute Type Description
uuid uuid Universally unique identifier. This is used as a persistent identifier, and must

never change. It is string type with a fixed length of 36 characters, which should
follow a specific pattern.

name String Human readable name. This is used as the header of the section and entry
within table of contents when generating documentation. The name is also
reported for a validation against this MVD, if assigned to concepts checked
against the MVD.

code String (opt) Human readable reference value of this element of the MVD definition
version String (opt) Sequential version number of this element of the MVD definition.
status enumeration

base: String
(opt)

The status information of this element of the MVD definition.
It has the following enumerators:
 Sample
 Proposal
 Draft
 Candidate
 Final
 Deprecated

author String (opt) The author(s) of his element of the MVD definition. Authors are separated by
semicolon.

owner String (opt) The legal owner of this element of the MVD definition
NOTE Official Model View Definitions by buildingSMART International shall
have ownership assigned to buildingSMART or another accepted
standardization organization.

copyright String (opt) The copyright under which the work is published.
NOTE: If adopted by buildingSMART International, the copyright shall lie either
with buildingSMART International, or is governed by a well-recognized open
license (e.g. creative commons, open source BSD/ GNU).

Table 14: Common attributes defined in the attributeGroup identity.
3.4.2 Definition
The element mvd:Definition groups definition text and links to additional figures, diagrams, examples, and
other external documents.
Attribute Type Description
Body Body (opt) HTML-formatted description of the concept in the default language.
Links Link [0:?] List of additional content, each of which may be in separate languages.

Table 15: Common element references defined in the element Definition.
3.4.3 Body
The element mvd:Body holds the definition text or explanatory remarks. It is qualified by a language tag. It
also holds tags that further classify the nature of the definition or remark.

NOTE: In order to correctly encapsulate the HTML formatted text, the content shall be tagged by <![CDATA[]]>
to preserve the HTML code.

Page no. Authors
28 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

HISTORY: tags attribute available since mvdXML 1.1.
Attribute Type Description
lang String (opt) Locale identifier based on RFC 1766 language codes to indicate the default

locale. Examples are ‘en’, ‘de’, ‘en-GB’, ’de-CH’.
tags String [0:?] List of tags that classify the element. All tags are separated through whitespaces

per default. A semicolon must be used if given tags consists of multiple words.
(content) String HTML-formatted content for generating documentation. Content within should be

encapsulated by paragraph tags (“<p>”) and/or list tags (“”). Images should
not be contained within; rather they should be specifically referenced by the Link
element (allowing for automatic figure numbering).

Table 16: Common attributes defined in the element Body.
3.4.4 Link
The element mvd:Link holds all links to additional documentation content.
Attribute Type Description
lang language Locale identifier based on RFC 1766 language codes to indicate the default

locale. Examples are ‘en’, ‘de’, ‘en-GB’, ’de-CH’.
title String (opt) Human readable name. This is used as the header of the link content and entry

within table of contents when generating documentation
category enumeration

base: String
(opt)

Indication about the category of the linked content.
definition: formatted as documented definition in alternate locale
agreement: formatted as NOTE in documentation
diagram: formatted as custom figure in documentation based on href
instantiation: formatted as instance diagram figure based on href
example: formatted as EXAMPLE in documentation based on href

href anyURI URL to referenced content, particularly for diagrams and examples that are
manually generated. This is used to reference any external files such that they
are included when generating documentation.
NOTE: URL’s local to the file system shall be relative.

(content) String HTML-formatted description in specified language.
Table 17: Common attributes defined in the element Link.

Page no. Authors
29 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

4 Rule Grammar
The grammar for parsing expression strings is defined below.
It is used to specify:
 mvd:TemplateRule.Parameters, and
 mvd:Constraint.Expression.

grammar mvdXMLv1_1;
/*---------------- * PARSER RULES *----------------*/
expression : boolean_expression ;
boolean_expression : boolean_term (logical_interconnection boolean_term)* ;
boolean_term : ((parameter (metric)? | metric) operator (value | parameter (metric)?)) | (LPAREN boolean_expression RPAREN);
parameter : SIMPLEID ;
metric : '[Value]' | '[Size]' | '[Type]' | '[Unique]' | '[Exists]';
logical_interconnection : AND | OR | XOR | NAND | NOR | NXOR ;
operator : EQUAL | NOT_EQUAL | GREATER_THAN | GREATER_THAN_OR_EQUAL | LESS_THAN | LESS_THAN_OR_EQUAL;
value : logical_literal | real_literal | string_literal | regular_expression;
logical_literal : FALSE | TRUE | UNKNOWN ;
real_literal : (sign)? (DIGIT | INT) ('.')? ((DIGIT | INT))? ('e' (sign)? (DIGIT | INT))? ;
string_literal : STRING ;
regular_expression : 'reg' STRING ;
sign : '+' | '-' ;

/*----------------* LEXER RULES *----------------*/
AND : 'AND' | 'and' | '&' | ';' ;
OR : 'OR' | 'or' | '|' ;
XOR : 'XOR' | 'xor' ;
NAND : 'NAND' | 'nand' ;
NOR : 'NOR' | 'nor' ;
NXOR : 'NXOR' | 'nxor' ;
EQUAL : '=' ;
NOT_EQUAL : '!=' ;
GREATER_THAN : '>' ;
GREATER_THAN_OR_EQUAL : '>=' ;
LESS_THAN : '<' ;

Page no. Authors
30 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

LESS_THAN_OR_EQUAL : '<=' ;
FALSE : 'FALSE' | 'false' ;
TRUE : 'TRUE' | 'true' ;
UNKNOWN : 'UNKNOWN' | 'unknown' ;
DIGIT : '0'..'9' ;
INT : '0'..'9'+;
HEX_DIGIT : DIGIT | ('a'..'f' | 'A'..'F') ;
LETTER : ('a'..'z') | ('A'..'Z') ;
SIMPLEID : LETTER (LETTER | DIGIT | '_')* ;
LPAREN : '(';
RPAREN : ')';
OCTAL_ESC : '\\' ('0'..'3') ('0'..'7') ('0'..'7') | '\\' ('0'..'7') ('0'..'7') | '\\' ('0'..'7') ;
UNICODE_ESC : '\\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT ;
ESC_SEQ : '\\' ('b'|'t'|'n'|'f'|'r'|'\"'|'\''|'\\') | UNICODE_ESC | OCTAL_ESC ;
STRING : '\'' (ESC_SEQ | ~('\\'|'\''))* '\'';
WS : (' '|'\t'|'\n'|'\r')+ { $channel = HIDDEN; } ;

The following tables describe more details about the meaning of keywords.
metric Description
Value Indicates the value of the attribute (value uses syntax according to the attribute type, defined

below).
Size Indicates the size of a collection or STRING (value is an INTEGER).
Type Indicates the type of the value assigned to the attribute (value is a STRING).
Unique Indicates whether value must be unique within the population of instances described within the

Concept Template (BOOLEAN).
Table 18: Description of metric values.
operator XML Escaped Description
= = Equal.
!= != Not Equal.
> > Greater Than.
>= >= Greater Than Or Equal.
< < Less Than.
<= <= Less Than Or Equal

Table 19: Description of operators.
Benchmark may be either a literal value or a parameter. The syntax of literal values varies according to the
EXPRESS attribute type and follows ifcXML (ISO-10303-28) format:

Page no. Authors
31 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Type Operators Description
INTEGER =, !=, >, >=, <,

<=
The integer value.

REAL =, !=, >, >=, <,
<=

The real value including decimal point, where equality is exact (no epsilon
offset).

BOOLEAN =, != The boolean value as “true” or “false”.
LOGICAL =, != The logical value as “true”, “false”, or “unknown”.
ENUM =, != The enumeration value by case-insensitive name.
STRING =, !=, >, >=, <,

<=
The string value, which may optionally be enclosed by single quotes (if escaping
required). Comparison operators indicate alphabetical sorting (e.g. “>=” can
indicate “must start with” such as the scope of a classification reference, or
earliest date/time).

BINARY =, != The binary value encoded as hexadecimal prefixed by “%” and number of
unused bits.

ENTITY =, !=, >, >=, <,
<=

The name of the entity type (e.g. “IfcWall”). Equality means exact type match;
“>” means subtype of; “>=” means same type or subtype; “<” means supertype
of; “<=” means same type or supertype.

Table 20: Description of operators that can be applied to different data types.

Page no. Authors
32 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

5 mvdXML Use Cases
This chapter describes typical use cases of mvdXML. Although the main structure of a Model View
Definition is always the same there are differences regarding mandatory, optional and not relevant data.
This review should enable to focus on features of mvdXML that are needed to support those use cases.

5.1 MVD Documentation
On basis of an mvdXML definition it is possible to generate a set of interlinked HTML files. The IfcDoc tool
from buildingSMART for instance enables to export HTML files using the style of the IFC4 documentation
(see Figure 5). The main focus of such documentation is to describe how a subset of IFC must be
implemented and used to fulfil specific requirements. Such kind of information is needed by software
developers for proper interpretation of the IFC specification.

Figure 5: HTML documentation of IFC4
The following parts of mvdXML are of main interest:

mvd:Definition attached to mvd:ModelView, mvd:ExchangeRequirement, mvd:ConceptTemplate,
mvd:ConceptRoot and mvd:Concept for storing definition text and links to additional figures, diagrams,
examples, and other external documents
mvd:ConceptTemplate definitions that enable to generate instance diagrams as shown in Figure 5

NOTE: For documentation purposes it is not necessary to specify an mvd:ConceptTemplate in full detail.
Instead it is sufficient to focus on elements that shall be shown in an instance diagram. This is different to
other use cases, in particular for data filtering and data validation, where all required elements must be
defined.

5.2 Specification of subset schemas
A subset schema includes only those parts of IFC that are relevant for implementation. Such subset
schema, which can be defined in EXPRESS or XML Schema, supports software implementation as it
enables to generate software code for file parsing (ifc or ifcXML), data management and data serialization.

Page no. Authors
33 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

But a subset schema does not include additional constraints that define proper use of the subset schema.
Therefore, the use of mvdXML can be simplified as it is only necessary to select entities and attributes that
shall be part of the subset schema. Also, no documentation or other meta-data is required as it cannot be
exported to EXPRESS or XML Schema.

5.3 Data Filtering
Data filtering creates a model subset and is similar to generation of a subset schema. But a data filter is
working on instance level, i.e. with data instead of schema definitions. Many instances can be defined for
a data type, but not all instances must be part of a Model View Definition. Accordingly, data filtering may
require adding further conditions that enable to differentiate instances of the same data type. This is leading
to more complex definitions. For example, a condition is necessary if space properties must be
distinguished from wall properties in an IFC model, because both are defined by IfcPropertySet instances.

5.4 Data Validation
Data validation checks if a data set fulfils all constraints of an exchange requirement. If required data is
missing or wrong then the check fails. In addition to data filtering it is therefore necessary to specify
Concept.Requirements, i.e. to differentiate between mandatory and excluded data, and to restrict possible
values of instances by using TemplateRule.Parameters of a Concept and Constraint.Expression of
AttributeRule and EntityRule used by ConceptTemplate. Similar to generation of subset schemas and data
filtering no documentation or other meta-data is required for this use case.

Page no. Authors
34 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

6 Glossary
6.1 ER
ER = Exchange Requirement; defines the data that is needed to fulfil a specific task. If not all mandatory
data is available then the task cannot be carried out. Exchange requirement definitions are independent
from a technical solution.

6.2 ERM
ERM = Exchange Requirement Model; implementation of an Exchange Requirement by an IT
specification.

6.3 MVD
MVD = Model View Definition; defines a subset of an IT specification that is able to store data for a set of
Exchange Requirements.

Page no. Authors
35 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

7 Examples
This sections shows a series of small mvdXML example files, used for the different purposes for which the mvdXML standard is developed.

7.1 Example for MVD documentation
The following example shows an mvdXML file to be used for documenting a model view definition, it is a direct output of the IFC document generator ifcDoc.
From this mvdXML file, in conjunction with the IFC schema definition, the following output is rendered.

Figure 6: Graphical representation of the concept template “Nesting”

Page no. Authors
36 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Figure 7: graphical representation of the concept template “port nesting”

Figure 8: rendering of HTML tables to document the exchange requirements for the different ports

Page no. Authors
37 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Figure 9: graphical representation of the usage of concept “port-nesting” at the root concept IfcHeatExchanger

<?xml version="1.0"?>
<mvdXML xmlns="http://buildingsmart-tech.org/mvd/XML/1.1" uuid="cb830d34-5696-4263-a7e9-2259ea343117" name="example 7.1"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://buildingsmart-tech.org/mvd/XML/1.1 ../mvdXML_V1.1.xsd">
 <Templates>
 <ConceptTemplate uuid="5098cd13-bf4b-473a-a846-a60f69e9b738" name="Object Composition" code="" applicableSchema="IFC4"
 applicableEntity="IfcObjectDefinition">
 <Definitions>
 <Definition>

Page no. Authors
38 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 <Body><![CDATA[
<p>Objects may be composed into parts to indicate levels of detail, such as a building having multiple storeys, a framed wall having studs, or a task having subtasks. Composition may form a hierarchy of multiple levels, where an object must have a single parent, or if a top-level object then declared within the single project or a project library.</p>
]]></Body>
 </Definition>
 </Definitions>
 <SubTemplates>
 <ConceptTemplate uuid="d1e6b86e-7658-443c-b708-86b7dd8b12f4" name="Nesting" applicableSchema="IFC4" applicableEntity="IfcObjectDefinition">
 <Definitions>
 <Definition>
 <Body><![CDATA[<p>A nesting indicates an external ordered part composition relationship between the hosting structure, referred to as the "host", and the attached components, referred to as the "hosted elements". The concept of nesting is used in various ways. Examples are:</p> Nesting is used on product elements to indicate external connectable parts such as faucets mounted on a sink, or switches within a junction box. Nesting is used on control objects to indicate specification hierarchies. Nesting is used on process objects to indicate subordinate processes which may occur in parallel or in series. Nesting is used on resource objects to indicate subordinate resource allocations which may occur in parallel or in series. <p>Nesting is a bi-directional relationship, the relationship from the hosting structure to its attached components is called Nesting, and the relationship from the components to their containing structure is called Hosting.</p>]]></Body>
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule AttributeName="IsNestedBy">
 <EntityRules>
 <EntityRule EntityName="IfcRelNests" />
 </EntityRules>
 </AttributeRule>
 </Rules>
 <SubTemplates>
 <ConceptTemplate uuid="bafc93b7-d0e2-42d8-84cf-5da20ee1480a" name="Port Nesting" code="" applicableSchema="IFC4"
 applicableEntity="IfcDistributionElement">
 <Definitions>
 <Definition>
 <Body><![CDATA[<p>Ports indicate possible connections to other objects according to specified system types, flow direction, and connection properties. Ports are typically connected between devices via cables, pipes, or ducts.</p> <p>Ports may have placement defined indicating the position and outward orientation of the port relative to the product or product type. Ports may also have material profile sets defined indicating the flow area and connection enclosure.</p>]]></Body>
 </Definition>
 </Definitions>
 <Rules>
 <AttributeRule RuleID="PredefinedType" AttributeName="PredefinedType" />

Page no. Authors
39 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 <AttributeRule AttributeName="IsNestedBy">
 <EntityRules>
 <EntityRule EntityName="IfcRelNests">
 <AttributeRules>
 <AttributeRule AttributeName="RelatedObjects">
 <EntityRules>
 <EntityRule EntityName="IfcDistributionPort">
 <AttributeRules>
 <AttributeRule RuleID="Name" Description="The name of the port." AttributeName="Name">
 <EntityRules>
 <EntityRule EntityName="IfcLabel" />
 </EntityRules>
 </AttributeRule>
 <AttributeRule RuleID="Flow" Description="The flow direction of the port." AttributeName="FlowDirection">
 <EntityRules>
 <EntityRule EntityName="IfcFlowDirectionEnum" />
 </EntityRules>
 </AttributeRule>
 <AttributeRule RuleID="Type" AttributeName="SystemType">
 <EntityRules>
 <EntityRule EntityName="IfcDistributionSystemEnum" />
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="ObjectPlacement">
 <EntityRules>
 <EntityRule EntityName="IfcLocalPlacement">
 <AttributeRules>
 <AttributeRule AttributeName="RelativePlacement">
 <EntityRules>
 <EntityRule EntityName="IfcAxis2Placement3D">
 <AttributeRules>
 <AttributeRule AttributeName="Location">
 <EntityRules>
 <EntityRule EntityName="IfcCartesianPoint" />
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Axis">
 <EntityRules>
 <EntityRule EntityName="IfcDirection" />

Page no. Authors
40 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="RefDirection">
 <EntityRules>
 <EntityRule EntityName="IfcDirection" />
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="IsDeclaredBy" />
 <AttributeRule AttributeName="PredefinedType">
 <EntityRules>
 <EntityRule EntityName="IfcDistributionPortTypeEnum" />
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </SubTemplates>
 </ConceptTemplate>
 </SubTemplates>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="dae06832-07d3-4b1c-b4a7-ee32e11d0189" name="HVAC Sample Model View" code="HVAC" applicableSchema="IFC4">
 <ExchangeRequirements>

Page no. Authors
41 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 <ExchangeRequirement uuid="a5846830-de9a-4195-9339-31169ecb7b0e" name="HVAC Sample Exchange" applicability="both" />
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="3ca6a49f-81c4-4010-9589-578cab9d4428" name="" applicableRootEntity="IfcHeatExchanger">
 <Concepts>
 <Concept uuid="875138d3-6911-4e35-9369-2d273f731250" name="Port" override="false">
 <Template ref="bafc93b7-d0e2-42d8-84cf-5da20ee1480a" />
 <Requirements>
 <Requirement applicability="both" requirement="mandatory" exchangeRequirement="a5846830-de9a-4195-9339-31169ecb7b0e" />
 </Requirements>
 <TemplateRules operator="and">
 <TemplateRule Description="Inlet of substance to be heated."
 Parameters="Name[Value]='HeatingInlet' AND Flow[Value]='SINK' AND Type[Value]='NOTDEFINED'" />
 <TemplateRule Description="Outlet of substance to be heated."
 Parameters="Name[Value]='HeatingOutlet' AND Flow[Value]='SOURCE' AND Type[Value]='NOTDEFINED'" />
 <TemplateRule Description="Inlet of substance to be cooled."
 Parameters="Name[Value]='CoolingInlet' AND Flow[Value]='SINK' AND Type[Value]='NOTDEFINED'" />
 <TemplateRule Description="Outlet of substance to be cooled."
 Parameters="Name[Value]='CoolingOutlet' AND Flow[Value]='SOURCE' AND Type[Value]='NOTDEFINED'" />
 </TemplateRules>
 </Concept>
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

7.2 Example for MVD validation
The following example shows an mvdXML file to be used to validate the completeness of IFC data in an IFC file. In the particular case, it checks that for every load
bearing and external wall the following is true: a property set “Pset_WallCommon” with the following properties “FireRating” and “ThermalTransmittance” are
provided, and that the direct optional attribute “PredefinedType” is given. It is permissible to either assign the properties on the occurrence object or at the type
object.

Page no. Authors
42 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Therefore a ConceptTemplate "Property Sets for Objects and Types" is included, that declares that part of the overall IFC structure, which is used to assign a
property set to an occurrence object, a type object to an occurrence object, and a property set to the type object. Since the definition of property set (and the
referenced definition of the property) is used twice (for occurrence and type object) it is declared as a partial concept template and referenced twice from the main
concept template.
As the stipulated completeness checks for “FireRating”, “ThermalTransmittance” and “PredefinedType” are only applicable to those walls, represented by IfcWall
or its subtypes, that are external and load bearing, a separate applicability check is performed as a precondition, before validating the rules themselves.
Each rule checking for the provision of the properties “FireRating” and “ThermalTransmittance” need to check, whether they are assigned to the occurrence (instance
of IfcWall) or the type (associated instance of IfcWallType). A recursive structure of TemplateRules with a @operator attribute is used to hold the logical
combinations.
<?xml version="1.0" encoding="UTF-8"?>
<mvdXML xmlns="http://buildingsmart-tech.org/mvd/XML/1.1" uuid="8a70d456-c609-4ef7-b496-b92fd1e12796" name="example 7.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://buildingsmart-tech.org/mvd/XML/1.1 ../mvdXML_V1.1.xsd">
 <Templates>
The concept template "Property Sets for Objects and Types" defined the concept template structure about how to associate property sets and type objects with
property sets to an occurrence object.
 <ConceptTemplate uuid="5c252c86-5bff-4372-9a27-b794069f9fbb" name="Property Sets for Objects and Types" applicableSchema="IFC4"
 applicableEntity="IfcObject">
 <Rules>
 <AttributeRule RuleID="PredefinedType" AttributeName="PredefinedType"/>
 <AttributeRule AttributeName="IsDefinedBy">
 <EntityRules>
 <EntityRule EntityName="IfcRelDefinesByProperties">
 <AttributeRules>
 <AttributeRule AttributeName="RelatingPropertyDefinition">
 <EntityRules>
 <EntityRule EntityName="IfcPropertySet">
 <References IdPrefix="O_">
 <Template ref="7c4c45c5-7ba9-4e19-b473-3e97093b3e0d"/>
 </References>

Page no. Authors
43 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

Here a partial concept template is referenced. In order to prevent a duplication of @RuleID names, which would otherwise occur, when the same partial template
“Property Set” is referenced twice from the same main concept template, a @IdPrefix attribute is added. The TemplateRule Parameters at the Concept need to
use these prefixes to unambiguously address the rule id.
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="IsTypedBy">
 <EntityRules>
 <EntityRule EntityName="IfcRelDefinesByType">
 <AttributeRules>
 <AttributeRule AttributeName="RelatingType">
 <EntityRules>
 <EntityRule EntityName="IfcTypeObject">
 <AttributeRules>
 <AttributeRule AttributeName="HasPropertySets">
 <EntityRules>
 <EntityRule EntityName="IfcPropertySet">
 <References IdPrefix="T_">
 <Template ref="7c4c45c5-7ba9-4e19-b473-3e97093b3e0d"/>
 </References>
Here the partial concept template for property sets is referenced a second time. Therefore a different @IdPrefix is used.
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </AttributeRules>
 </EntityRule>
 </EntityRules>
 </AttributeRule>

Page no. Authors
44 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 </Rules>
 </ConceptTemplate>
The following concept templates are partial concept templates used to allow for a more modular structure of concept template definitions. It includes the definition
of property sets and the definition of a property with single value, which is referenced from the partial concept template for property sets. Hence partial concept
templates can be nested.
 <ConceptTemplate uuid="6655f6d0-29a8-47b8-8f3d-c9fce9c9a620" name="Single Value" applicableSchema="IFC4"
 applicableEntity="IfcPropertySingleValue" isPartial="true">
 <Rules>
 <AttributeRule RuleID="PName" AttributeName="Name">
 <EntityRules>
 <EntityRule EntityName="IfcIdentifier"/>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Description">
 <EntityRules>
 <EntityRule EntityName="IfcText"/>
 </EntityRules>
 </AttributeRule>
 <AttributeRule RuleID="PSingleValue" AttributeName="NominalValue">
 <EntityRules>
 <EntityRule EntityName="IfcValue"/>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 <ConceptTemplate uuid="7c4c45c5-7ba9-4e19-b473-3e97093b3e0d" name="Property Sets" code="" applicableSchema="IFC4"
 applicableEntity="IfcPropertySet" isPartial="true">
 <Rules>
 <AttributeRule RuleID="PsetName" AttributeName="Name">
 <EntityRules>
 <EntityRule EntityName="IfcLabel"/>
 </EntityRules>
 </AttributeRule>
 <AttributeRule AttributeName="Description">
 <EntityRules>
 <EntityRule EntityName="IfcText"/>
 </EntityRules>
 </AttributeRule>

Page no. Authors
45 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 <AttributeRule AttributeName="HasProperties">
 <EntityRules>
 <EntityRule EntityName="IfcPropertySingleValue">
 <References>
 <Template ref="6655f6d0-29a8-47b8-8f3d-c9fce9c9a620"/>
 </References>
 </EntityRule>
 </EntityRules>
 </AttributeRule>
 </Rules>
 </ConceptTemplate>
 </Templates>
 <Views>
 <ModelView uuid="72dad5df-6f61-49f2-ba8c-baccf24a6ce5" name="design phase" applicableSchema="IFC4" code="LPH 3">
 <Definitions>
 <Definition>
 <Body lang="de"><![CDATA[Model progression requirements for design phase]]></Body>
 </Definition>
 </Definitions>
 <ExchangeRequirements>
 <ExchangeRequirement uuid="ae70f764-938b-4cf7-9814-c29a47f56b0e" name="design phase coordination" code="LPH 3a" applicability="export">
 <Definitions>
 <Definition>
 <Body lang="de"><![CDATA[Model progression requirements for design phase for coordination.]]></Body>
 </Definition>
 </Definitions>
 </ExchangeRequirement>
 </ExchangeRequirements>
 <Roots>
 <ConceptRoot uuid="0e93f597-f5e1-475b-87a7-eb007993a50d" name="load bearing external walls" applicableRootEntity="IfcWall">
 <Definitions>
 <Definition>
 <Body lang="de"><![CDATA[...]]></Body>
 </Definition>
 </Definitions>
This concept has a precondition that needs to be met before the template rules are executed. The Applicability imposes that only those instances of IfcWall are
validated, that have the property set “Pset_WallCommon” and the two properties “IsExternal” and “LoadBearing” assigned:
 The value of “IsExternal” shall be “true” and the value of “LoadBearing” shall be “true”.

Page no. Authors
46 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

In addition, it checks, whether the properties are provided at the occurrence or at the type, and if both are provided, that the override value from the occurrence is
used for the check.
 <Applicability>
 <Template ref="5c252c86-5bff-4372-9a27-b794069f9fbb"/>
 <!-- Applicability: check that IsExternal and LoadBearing property are both set to true (AND) -->
 <TemplateRules operator="and">
 <!-- two alternatives to provide the IsExternal property (as property on occurrence or type) (OR) -->
 <TemplateRules operator="or">
 <!-- check occurrence property -->
 <TemplateRule Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='IsExternal' AND O_PSingleValue[Value]=TRUE"/>
 <!-- for check type properties two criteria must be checked: 1) defined on type and 2) not redefined on occurrence -->
 <TemplateRules operator="and">
 <TemplateRule Parameters="T_PsetName[Value]='Pset_WallCommon' AND T_PName[Value]='IsExternal' AND T_PSingleValue[Value]=TRUE"/>
 <TemplateRules operator="not">
 <TemplateRule Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='IsExternal'"/>
 </TemplateRules>
 </TemplateRules>
 </TemplateRules>
 <TemplateRules operator="or">
 <TemplateRule Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='LoadBearing' AND O_PSingleValue[Value]=TRUE"/>
 <!-- for check type properties two criteria must be checked: 1) defined on type and 2) not redefined on occurrence -->
 <TemplateRules operator="and">
 <TemplateRule Parameters="T_PsetName[Value]='Pset_WallCommon' AND T_PName[Value]='LoadBearing' AND T_PSingleValue[Value]=TRUE"/>
 <TemplateRules operator="not">
 <TemplateRule Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='LoadBearing'"/>
 </TemplateRules>
 </TemplateRules>
 </TemplateRules>
 </TemplateRules>
 </Applicability>
At the concepts the validation rules for the required provision of “FireRating”, “ThermalTransmittance” and “PredefinedType” are defined. There are three individual
concepts, each of them is validated separately.
In this example, they all refer to the same concept template "Property Sets for Objects and Types" via the IDREF link "5c252c86-5bff-4372-9a27-b794069f9fbb".
The validation is enforced for the exchange requirement “design phase coordination” via the IDREF link “ae70f764-938b-4cf7-9814-c29a47f56b0e”, the requirement
is set to “mandatory”, meaning, that an error is displayed, if the outermost template rule validates to “false”.

Page no. Authors
47 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 <Concepts>
 <!-- Test #1: check existence of FireRating property -->
 <Concept uuid="983ddc5d-c0c8-47c9-8491-97add7677139" name="load bearing external walls required to have property 'FireRating'">
 <Definitions>
 <Definition>
 <Body lang="de"><![CDATA[For all oad bearing external walls the property 'FireRating' shall be applied]]></Body>
 </Definition>
 </Definitions>
 <Template ref="5c252c86-5bff-4372-9a27-b794069f9fbb"/>
 <Requirements>
 <Requirement applicability="export" exchangeRequirement="ae70f764-938b-4cf7-9814-c29a47f56b0e" requirement="mandatory"/>
 </Requirements>
 <TemplateRules operator="or">
 <TemplateRule Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='FireRating' AND O_PSingleValue[Exists]=TRUE"/>
 <TemplateRule Parameters="T_PsetName[Value]='Pset_WallCommon' AND T_PName[Value]='FireRating' AND T_PSingleValue[Exists]=TRUE"/>
 </TemplateRules>
 </Concept>
The first concept checks, that every instance of IfcWall, that passes the Applicability check (meaning that is an external and load bearing wall), has a property of
name “FireRating” within a property set with name “Pset_WallCommon”. Thereby it can either be the property set assigned to the occurrence, or the property set
assigned to the type, or both. The variable “O_PsetName” refers to the @RuleID “PsetName” defined in the partial concept template that has been referenced by
the main concept template “Property Sets for Objects and Types” with the @IdPrefix=”O_” – i.e. to the property set assigned directly to the IfcWall occurrence.
Similar the variable “T_PsetName” refers to the property set assigned to the associated IfcWallType.
 <!-- Test #2: check existence of ThermalTransmittance property -->
 <Concept uuid="e9941408-82a6-4c00-a397-11087e6c5d1f" name="load bearing external walls required to have property 'ThermalTransmittance'">
 <Definitions>
 <Definition>
 <Body lang="de"><![CDATA[For all oad bearing external walls the property 'ThermalTransmittance' shall be applied]]></Body>
 </Definition>
 </Definitions>
 <Template ref="5c252c86-5bff-4372-9a27-b794069f9fbb"/>
 <Requirements>
 <Requirement applicability="export" exchangeRequirement="ae70f764-938b-4cf7-9814-c29a47f56b0e" requirement="mandatory"/>
 </Requirements>
 <TemplateRules operator="or">

Page no. Authors
48 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

 <TemplateRule Parameters="O_PsetName[Value]='Pset_WallCommon' AND O_PName[Value]='ThermalTransmittance' AND O_PSingleValue[Exists]=TRUE"/>
 <TemplateRule Parameters="T_PsetName[Value]='Pset_WallCommon' AND T_PName[Value]='ThermalTransmittance' AND T_PSingleValue[Exists]=TRUE"/>
 </TemplateRules>
 </Concept>
The second concepts checks the provision of the property “ThermalTransmittance” using the same method.
 <!-- Test #3: check existence of PredefinedType attribute -->
 <Concept uuid="a14ab957-e65d-48c1-84fe-8f99c2630646" name="load bearing external walls required to have attribute PredefinedType">
 <Definitions>
 <Definition>
 <Body lang="de"><![CDATA[For all oad bearing external walls the property 'PredefinedType' shall be applied]]></Body>
 </Definition>
 </Definitions>
 <Template ref="5c252c86-5bff-4372-9a27-b794069f9fbb"/>
 <Requirements>
 <Requirement applicability="export" exchangeRequirement="ae70f764-938b-4cf7-9814-c29a47f56b0e" requirement="mandatory"/>
 </Requirements>
 <TemplateRules>
 <TemplateRule Parameters="PredefinedType[Exists]=TRUE"/>
 </TemplateRules>
 </Concept>
The third concept checks, whether the direct, optional attribute PredefinedType at ifcWall has a value associated. The metric “[Exists]” checks, that the value of
PredefinedType is not NIL or false (in other words, that a value is provided for the optional attribute).
 </Concepts>
 </ConceptRoot>
 </Roots>
 </ModelView>
 </Views>
</mvdXML>

Page no. Authors
49 Chipman, T; Liebich, T; Weise, M - Model Support Group of buildingSMART International

Model Support Group

8 XSD Listing
The XSD can be download from: http://buildingsmart-tech.org/mvd/XML/1.1/mvdXML_V1.1.xsd

