

IFC Implementation Agreement Space Boundary

Overview on the common agreements for implementing space boundaries

April 2009 / proposed amendment March 2010

Initial summary: Karl-Heinz Häfele, edited: Thomas Liebich

Space Boundary Implementation Agreements

Consolidated results from various initiatives and meetings on implementing space boundaries

Initiatives:

buildingSMART Implementer Support Group buildingSMART German Speaking HVAC group OGC/buildingSMART Alliance AECOO-1 testbed ERDC ENERGie project European Integrated Project InPro

Meetings (selection):

09.03.2009 / FZ Karlsruhe, Olof Granlund
ISG meeting 11.03.2009, including
LBNL, Graphisoft, DDS, Granlund, FZK, AEC3,
Teleconference 12.03.2009, DigitalAlchemy, CIFE/GSA

Distributed to various groups for comments until April 1st

SB implementation agreements – amendment #1

Proposed amendment #1 – March 2010

- There are cases where the restriction of not using inner loops leads to results where multiple split space boundaries would have to be created (e.g. around a column touching a ceiling, etc.)
- The Helsinki agreements of April 2010 had been misinterpreted that no inner loops are allowed (correct: they are not allowed for openings with/without doors and windows)
- This leads to the amending clarifications and additions, see pages 15, 16, 17.

General thoughts

Space Boundaries are needed to support different tasks, e.g.

- Energy Calculation,
- Lighting Calculation
- Indoor Navigation
- Quantity Take Off and
- Facility Management

Different tasks require different kinds of space boundaries

- All should be derived from the same principles
- More granular kinds are derived from more general kinds
- A "kind" of space boundary is also referred to as "level"

Principles for space boundaries

Space Boundaries have to be defined as simple, clearly and redundant free as possible

- Higher level space boundaries are "specializations", not "contradictions" of lower level space boundaries
- There should be only two levels of space boundary implementations
 - Space surfaces boundaries, also referred to by 1st level
 - Thermal space boundaries, also referred to by 2nd level
- Each IFC exchange file can ONLY contain boundaries of ONE single level, either 1st or 2nd.
 - Note: the term 2nd level consumes all special cases needed for thermal analysis (it combines and hides 2nd, and 3rd level)

1stLevel & 2ndLevel Space Boundaries (SB)

Differences between SB levels

- Influenced by "what is on the other side"
 - 1stLevel no influence,
 - 2ndLevel influence
- Reflected in the IFC Header
 SpaceBoundary1stLevelAddOnView
 SpaceBoundary2ndLevelAddOnView
 No combination allowed

Sublevels of 2nd level Space Boundaries

Differentiation within 2nd Level

- Influenced by "what kind of element is on the other side"
 - 2a) there is a space behind
 - 2b) there is no space behind, but a physical element

Note: 2b is also called 3rd level SB

Reflection within the IFC exchange file -1-

IFC Header

File containing only 1stLevel space boundaries

File containing only 2ndLevel space boundaries

Reflection within the IFC exchange file -2-

IFC Space Boundary Objects within IFC File

- 1stLevel
 - IfcRelSpaceBoundary.Name = "1stLevel"
 - IfcRelSpaceBoundary.Description = \$ (i.e. NIL)

```
#5= IFCRELSPACEBOUNDARY('2gOpAsSZf0Zv7F6pkKDuGM',#1,'1stLevel',$,
#1100,#2100,#15,.PHYSICAL.,.INTERNAL.);
```

- 2ndLevel
 - IfcRelSpaceBoundary.Name = "2ndLevel"
 - IfcRelSpaceBoundary.Description = "2a", or "2b"

```
#6= IFCRELSPACEBOUNDARY('2gOpAsSZf0Zv7F6pkKDuGN',#1,'2ndLevel',
'2a',#1100,#2100,#16,.PHYSICAL.,.INTERNAL.);
#7= IFCRELSPACEBOUNDARY('2gOpAsSZf0Zv7F6pkKDuGO',#1,'2ndLevel',
'2b',#1100,#2100,#17,.PHYSICAL.,.INTERNAL.);
```

Building Elements having Space Boundaries

Elements in an IFC file that have to have space boundaries

- Walls (incl. Curtain Walls)
- Slabs
- Roofs
- Columns
- Windows and Doors
- Openings (Virtual Elements)
- Space Separators (Virtual Elements)

Elements that do not have space boundaries

- Beams
- Stairs and Ramps (external)
- Building Element Proxies

Container Elements providing space boundaries

Container elements are elements with parts, such as

- IfcWall (when decomposed into IfcBuildingElementPart's)
- IfcRoof
- IfcCurtainWall

The container itself has the boundary geometry

- the IfcCurtainWall (or other container) has the IfcRelSpaceBoundary attached
- even if the IfcCurtainWall has own elements as parts, and those parts have geometry only the IfcCurtainWall has boundaries
 - The space boundary of the IfcCurtainWall is potential simplified
 - Having a space boundary per every lintel, etc. would be an overkill

Connection geometry for 1st and 2nd Level SB

Limited to:

- Only connection geometry at the RelatedSpace
- Only IfcConnectionSurfaceGeometry (no Point, no Line)
- Same for 1st and 2nd level SB

```
#1851= IFCRELSPACEBOUNDARY('0eY2BBnPLEhxpxN_7YB511',#13,
'1stLevel',$,#762,#362,#1850,.PHYSICAL.,.EXTERNAL.);
#1850= IFCCONNECTIONSURFACEGEOMETRY(#1846,$);
```

Geometric items for 1st and 2nd Level SB

Geometric items of the connection surface geometry

- In case of 1st Level
 - IfcSurfaceOfLinearExtrusion with trimmed curves (line or arc)
 - IfcCurveBoundedPlane with no restrictions of outer bound
 - IfcFaceBasedSurfaceModel with no restrictions
- In case of 2nd Level
 - IfcCurveBoundedPlane with restrictions (only polyline as outer boundary)
 - IfcFaceBasedSurfaceModel with no restrictions
 Curved space boundaries are faceted, a recommendation of number of facets is made (36 per 360', or 1 of 10')

Openings (including door/window) having SB's

Openings (including door/window) have space boundaries

- They do not generate "holes" or "inner loops" in the space boundaries of the walls or slabs in which they are contained
- Same for 1st and 2nd level space boundaries

Solution is the same for an *IfcOpening* (without window/door) and an *IfcOpening* with window and door as fillings.

In case of *IfcWindow* and *IfcDoor* – the space boundary is then attached to the window and door, and NOT to the opening.

In case of IfcOpeningElement without a filling (door or window) – the space boundary is attached to the opening

SB for holes NOT created by openings

Space boundaries of building elements that have holes NOT generated by an opening (i.e. no *HasOpenings* inverse relationship) as defined in previous page:

Holes CAN be represented by EITHER

- "inner loops" SIZEOF (IfcCurveBoundedPlane.InnerBoundaries) > 0
- splitting the space boundary into smaller SB's around the hole

Same applies to 1st and 2nd level SB (see next pages for examples)

SB for holes (NOT openings) using inner loops

Example: multi-storey space through a slab (no opening)

Example: a big space with fully enclosed inner spaces

NOTE: topological constraints for inner loops (not overlapping each other and not overlapping outer boundary) have to be preserved

SB for holes (NOT openings) by splitting SB's

Example: slab with hole (not opening), exported by multiple space boundaries (all without "inner loop").

NOTE Number of space boundaries depends on splitting algorithm.

SUMMARY of Amendment March 2010:

- 1.) agreement not to subtract opening space boundaries from "host" surface remains unchanged
- 2.) clarify that other cases can be exported by using "inner loops" or by splitting the space boundaries

Virtual Space Boundary – Virtual Element

Detailed implementation questions

- How to implement IfcRelSpaceBoundary.PhysicalOrVirtualBoundary
 - Current Implementation Guide: If the attribute
 PhysicalOrVirtualBoundary is set to VIRTUAL the bounding element is an IfcVirtualElement, or an IfcOpeningElement
 - Note: this ignores the IfcRelSpaceBoundary.WR (would generate an error (is already fixed for the next release of IFC)
- Add to it:
 - → If there is no related element, the attribute

 PhysicalOrVirtualBoundary should be NOTDEFINED

Internal or external (1. & 2. Level)

Detailed implementation questions

- How to implement IfcRelSpaceBoundary.InternalOrExternalBoundary
- Should be recalculated without considering the Common Properties (IsExternal) of the related Building Element
 - Valid setting of the InternalOrExternal flag: EXTERNAL, INTERNAL,
 NOTDEFINED for 1st level, and EXTERNAL, INTERNAL for 2nd level
 - In the case of 1stLevel Space Boundaries, if the boundary is internal and external the attribute should be set NOTDEFINED
 - In the case of 2ndLevel Space Boundaries: it has to be either EXTERNAL, or INTERNAL

Completeness (1stLevel, 2ndLevel)

Space boundaries shall completely bound any space

- Always air tight
- Always complete, sum of (PHYSICAL, VIRTUAL, NOTDEFINED)
 fully encloses a space
- Boundaries of doors, windows, openings overlap the wall, slab SB's

Correct surface orientation

Surface normals always point outward of the space (into the material)

